Configuration Example, Switching

Link State Tracking

René Jorissen on March 9, 2009 0 Comments • Tags: #based #blade #errdisabled #group #link #on #portid #route #state #system #tracking #virtual

Last week a friend called me and told me he was having serious problems with his network. A complete blade environment wasn’t able to communicate with the rest of the network. I asked what changed in the network and he told me that he had added a VLAN to a trunk allowed lists.

Because he is a friend, I dialed in and checked the configuration of the switch. I noticed that all ports on the switch were err-disabled. What happened here, that all switch ports were err-disabled!!! I noticed the configuration of link state tracking on all ports.

Link-state tracking, also known as trunk failover, is a feature that binds the link state of multiple interfaces. Link-state tracking provides redundancy in the network when used with server network interface card (NIC) adapter teaming. When the server network adapters are configured in a primary or secondary relationship known as teaming and the link is lost on the primary interface, connectivity transparently changes to the secondary interface.

At first I was skeptic about the link state configuration and asked my friend why it was used. He couldn’t give me any answer, because he didn’t configure the switch. For me it was hard to find a reason why link state tracking was used, because I wasn’t familiar with the network. I removed the link state configuration from the switch. All ports changed to a normal state. I noticed that the uplink (port-channel) configuration wasn’t correct. They added the VLAN to the trunk allowed lists on a member port and not on the port-channel interface.

After helping my friend and dreaming for a couple of days, I started thinking about the Link State Tracking feature. I tried to discover why someone configured the feature in my friends environment. Eventually, after some brain cracking, I found the solution. Let’s look at the following example environment.

LinkStateTracking

The figure shows one ESX server, which has two NIC’s. One NIC is connected to bl-sw01 and the other NIC is connected to bl-sw02. The ESX uses the load-balancing algorithm “Route based on Virtual PortID”.

Now lets assume the link between bl-sw02 and dis-sw02 loses its connection. Because the ESX server still has a connection with bl-sw02, it keeps sending packet that way. Switch bl-sw02 doesn’t have any uplink to the rest of the network, so the packet will get dropped.

When using Link State Tracking the connection between the ESX server and switch bl-sw02 will also loose its connection when the uplink between bl-sw02 en switch dis-sw02 gets lost. The ESX server will only use the connection with switch bl-sw01 to reach the rest of the network. Link State Tracking uses upstream and downstream interfaces. In the example the connection between the switch port, which connects switch bl-sw02 to switch dis-sw02, would be configured as an upstream port. The switch port to the ESX server would be configured as a downstream port. The downstream port is put in err-disable state when the upstream port loses its connection. This is exactly what you would like to accomplish.

The first step to enable Link State Tracking globally on the switch:

bl-sw02(config)# link state track 1

The next step is configuring the upstream and downstream interfaces.

interface GigabitEthernet0/16
description switch-uplink

switchport trunk encapsulation dot1q
switchport mode trunk
switchport nonegotiate
link state group 1 upstream
spanning-tree link-type point-to-point

!

interface GigabitEthernet0/10
description ESX01

switchport trunk encapsulation dot1q
switchport mode trunk
switchport nonegotiate
link state group 1 downstream
spanning-tree portfast trunk

You can check the status of the Link State Group with the following command:

bl-sw02#show link state group detail

Link State Group: 1 Status: Enabled, Up

Upstream Interfaces : Gi0/16(Up)

Downstream Interfaces : Gi0/10(Up)

In the future I will use Link State Tracking, especially in blade environments. At least in blade environments with multiple switch, which don’t support some kind of stacking technology, and servers with multiple NIC’s.

The following two tabs change content below.

René Jorissen

Co-owner and Solution Specialist at 4IP Solutions
René Jorissen works as Solution Specialist for 4IP in the Netherlands. Network Infrastructures are the primary focus. René works with equipment of multiple vendors, like Cisco, Aruba Networks, FortiNet, HP Networking, Juniper Networks, RSA SecurID, AeroHive, Microsoft and many more. René is Aruba Certified Edge Expert (ACEX #26), Aruba Certified Mobility Expert (ACMX #438), Aruba Certified ClearPass Expert (ACCX #725), Aruba Certified Design Expert (ACDX #760), CCNP R&S, FCNSP and Certified Ethical Hacker (CEF) certified. You can follow René on Twitter and LinkedIn.

Latest posts by René Jorissen (see all)

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.